Измерение индуктивности катушки резистором. Измерение индуктивности подручными средствами. Что вам понадобится

Наиболее простой и доступный для радиолюбителей способ измерения индуктивности низкочастотной катушки (дросселя низкой частоты, обмотки трансформатора со стальным сердечником и т. п.) заключается в следующем:

1) собирают схему, изображенную на рис. ; в качестве прибора, измеряющего напряжения на переменном резисторе R и катушке L х используют тестер или отдельный вольтметр переменного тока; максимальное значение сопротивления резистора мощностью рассеяния 0,25-1-0,5 Вт выбирают в пределах 100-30000 Ом (в зависимости от ожидаемой величины).

2.32. Измерение индуктивностей низкочастотных катушек

2) устанавливают с помощью автотрансформатора АТ напряжение на уровне 10 В и замечают показание U 1 вольтметра, то есть падение напряжения на исследуемой катушке;

3) переводят ползунок переключателя из положения 1-3 в положение 1-2 , присоединяя таким образом вольтметр параллельно резистору, и подбирают такое значение сопротивления R = R 2 , при котором падение напряжения на резисторе также равно U 1 .

4) вычисляют индуктивность катушки по формуле:

L" x = 0,00318 √ RR 2 Гн, (32)

где R 1 и R 2 - сопротивления резистора (Ом) при нахождении ползунка переключателя в положениях 1-3 и 1-2.

При отсутствии переменного резистора индуктивность катушки измеряют с помощью постоянного резистора. Схема и процесс измерения остаются прежними, формула же для подсчета L х - дополняется множителем U 1 /U 2 , то есть приобретает вид:

L"" x = 0,00318 R(U 1 /U 2) Гн, (33)

где R - сопротивление резистора, Ом,

U 1 и U 2 - показания вольтметра в положениях 1-3 и 1-2 ползунка переключателя.

В большинстве случаев индуктивные сопротивления обмоток намного превышают их активные сопротивления, поэтому приведенные выше формулы дают достаточно точные значения индуктивности.

Однако если число витков катушки мало, а сопротивление постоянному (или переменному) току велико (несколько десятков или сотен Ом), то L" x и L"" x вычисляют по другим, более точным формулам, а именно:

где R - сопротивление резистора при нахождении ползунка переключателя в положении 1-2; U - напряжение на последовательно соединенных R и L x ; U 2 - напряжение на резисторе равное напряжению U 1 на катушке L х ;

L x " = 0,00318 R 0 / tg α ,

где R - активное сопротивление обмотки;

α - угол, образованный стороной ВС треугольника ABC () и перпендикуляром, опущенным из точки В на продолжение стороны ЛС.

Рис. 2.40 . Треугольник напряжений, определяющий угол α

Тангенс угла α находят так. Откладывают на произвольной прямой MN () отрезок АС , пропорциональный напряжению U 2 на резисторе R . Затем проводят из точек А и С , как из центров, радиусами, пропорциональными напряжению U источника питания и напряжению U 1 на обмотке, две дуги. Соединяют точку В пересечения этих дуг с точкой С и опускают из точки В перпендикуляр BD на прямую MN . В заключение удлиняют высоту BD треугольника ABC до 100 мм (отрезок DK ) и проводят через точку К прямую KP , параллельную стороне ВС треугольника ABC . Если принять отрезок DK за единицу, то отсекаемый при этом на прямой MN отрезок PD и будет численно равен тангенсу угла α .

В тех случаях, когда сопротивление катушки постоянному току превышает ее индуктивное сопротивление, измерение L x проводят при другой, более высокой, частоте (например, 400 или 800 Гц). Форма кривой напряжения на выходе источника напряжения этой повышенной (звуковой) частоты должна быть синусоидальной.

Рис. 2.41. К вопросу нахождения тангенса угла α

При переходе к частоте, не равной 50 Гц, в формулы (32) ~ (35) вводят вместо коэффициента 0,00318 множитель 1/2π f источника питания схемы, где f - частота источника питания схемы.

Приставка для измерения индуктивности и ее применение в практике радиолюбителя

Предлагаемая приставка к частотомеру для определения расчетным путем индуктивности в диапазоне 0,2 мкГн... 4 Гн отличается от прототипов пониженным напряжением на измеряемой индуктивности (амплитуда не более 100 мВ), что снижает погрешность измерения для катушек на малогабаритных кольцевых и замкнутых магнитопроводах и дает возможность измерить с достаточной для практики точностью начальную магнитную проницаемость магнитопроводов. Кроме того, малое значение напряжения на контуре позволяет оценивать индуктивность катушки непосредственно в конструкции, без демонтажа.

Для многих начинающих радиолюбителей изготовление и оценка индуктивности катушек, дросселей, трансформаторов становится «камнем преткновения». Промышленные измерители малодоступны, самодельные законченные конструкции, как правило, сложны в повторении и при их настройке необходимы промышленные приборы. Поэтому особой популярностью пользуются простые приставки к частотомеру или осциллографу.

Описания и схемы подобных устройств были опубликованы в периодической литературе . Они просты в повторении, удобны в применении. Но сведения в статьях в части заявленных погрешностей и пределов измерения нередко приводят к ошибочным выводам и искаженным результатам. Так в указано, что приставка позволяет измерить индуктивность более 0,1 мкГн, а погрешность измерения зависит от подбора конденсатора, который в авторской конструкции имеет допустимое отклонение номинальной емкости не более ±1 %. И это при том, что на указанных на схеме транзисторах устойчивая генерация начинается с индуктивностью колебательного контура 0,15...0,2 мкГн (желающие легко могут проверить), а собственная индуктивность выводов от платы до разъема 30 мм оказывается равной 0,1...0,14 мкГн. В другой статье указывается погрешность до 1,5 % от верхнего предела (кстати, обратите внимание, нижний предел 0,5 мкГн с погрешностью 0,9 мкГн ― и это верно, иными словами измерение таких величин носит оценочный характер) как для маленьких, так и больших значений индуктивности, без учета собственной емкости катушек. А такая емкость может достигать соизмеримой с контурной величины и вносить дополнительную погрешность до 10…20 %.

В этой статье сделана попытка в какой-то мере восполнить отмеченный пробел и показать методы оценки погрешности измерений и способы применения действительно простой и полезной конструкции в лаборатории каждого радиолюбителя.

Предлагаемая приставка к частотомеру предназначена для оценки и измерения с достаточной для практики точностью индуктивности в диапазоне 0,2 мкГн... 4 Гн. Она отличается от прототипов пониженным напряжением на измеряемой индуктивности (амплитуда не более 100 мВ), что снижает погрешность измерения индуктивности на малогабаритных кольцевых и замкнутых магнитопроводах и дает возможность измерить начальную магнитную проницаемость магнитопроводов. Кроме того, малое значение напряжения на контуре позволяет оценивать индуктивность катушки непосредственно в конструкции, без демонтажа. Такую возможность оценят те, кому часто приходится заниматься ремонтом и настройкой аппаратуры при отсутствии схем и описаний.

Для работы с приставкой подходят любые самодельные или промышленные частотомеры, позволяющие измерять частоту до 3 МГц с точностью не менее 3х знаков. Если нет частотомера, подойдет и осцилограф. Точность измерения временных параметров у последних, как правило, порядка 7…10%, что и определит погрешность измерения индуктивности.

Ток, потребляемый приставкой при напряжении питания в интервале значений 5…15 В, не более 22 мА.

Принцип измерения индуктивности основан на известном соотношении, связующим параметры элементов колебательного контура с частотой его резонанса (формула Томсона)

При емкости контура Ск = 25330 пФ, формула упрощается

Где Т ― период в микросекундах.

В приставке (ее схема показана на рис. 1 ) используется генератор с эмиттерной связью в двухкаскадном усилителе, частота гармонических колебаний которого определяется емкостью конденсатора С1 и измеряемой индуктивностью Lx, подключаемой к пружинным зажимам Х1. Так как используется непосредственное соединение базы транзистора VT1 с коллектором VT2, то коэффициент петлевого усиления генератора высок, что обеспечивает устойчивую генерацию при изменении соотношения L/C в широком диапазоне. Коэффициент петлевого усиления пропорционален крутизне используемых транзисторов и может эффективно регулироваться изменением тока эмиттеров, для чего используется выпрямитель на диодах VD1, VD2 и управляющий транзистор VT3. Введение усилителя на транзисторе VT4 с КU= 8…9 позволило снизить амплитуду напряжения на контуре до уровня 80…90 мВ при выходной амплитуде 0,7 В. Эмиттерный повторитель обеспечивает работу на низкоомную нагрузку.

Устройство работоспособно при изменении напряжения питания в интервале 5...15 В, при этом вариации уровня выходного напряжения не превышают 20 %, а уход частоты F= 168,5 кГц (с катушкой высокой добротности, намотанной на сердечнике 50ВЧ при индуктивности L= 35 мкГн) не более 40 Гц!

В конструкции можно использовать в позициях VT1, VT2 транзисторы КТ361Б, КТ361Г, КТ 3107 с любым буквенным индексом, хотя несколько лучшие результаты достигаются с КТ326Б; в позиции VT3 ― кремниевые транзисторы структуры р-n-р, например, КТ209В, КТ361Б, КТ361Г, КТ3107 с любым буквенным индексом. Для буферного усилителя (VT4, VT5) пригодно большинство высокочастотных транзисторов. Параметр h21Э для транзистора VT4 ― более 150, для остальных не менее 50.

Диоды VD, VD2 ― любые высокочастотные кремнивые, например, серий КД503, КД509, КД521, КД522.

Резисторы ― МЛТ-0,125 или аналогичные. Конденсаторы, кроме С1, ― малогабаритные соотвественно керамические и электролитические, допустим разброс 1,5…2 раза.

Конденсатор С1 емкостью 25330 пФ определяет точность измерения, поэтому ее значение желательно подобрать с отклонением не более ±1 % (можно составить из нескольких термостабильных конденсаторов, например 10000+10000+5100 пФ из группы КСО, К31. Если нет возможности точно подобрать емкость, можно воспользоваться описанной ниже методикой.

В качестве разъема Х1 удобно использовать пружинящие зажимы для "акустических" кабелей. Разъем Х3 для соединения с частотомером ― СР–50-73Ф.

Детали монтируют на печатной плате (рис. 2 ) из односторонне фольгированного стеклотекстолита. Допустимо использовать навесной монтаж.В качестве корпуса для приставки можно применить любой подходящий по размерам коробок из любого материала. Разместить разъем Х1 необходимо так, чтобы обеспечить минимальную длину соединяющих его с платой проводников.

После проверки правильности монтажа следует подать питание напряжением 12 В, не подключая катушки к разъему Х1. Напряжение на эмиттере VT5 должно быть примерно равным половине питающего напряжения; если отклонение больше, потребуется подбор резистора R4. Ток потребления окажется близким к 20 мА.

Присоедините к разъему Х1 катушку Lx индуктивностью в пределах десятков―сотен микрогенри (точное значение некритично), а к разъему Х3 ― осциллограф или высокочастотный вольтметр. На выходе приставки должно быть переменное напряжение 0,45…0,5 В эфф (амплитудное значение 0,65…0,7 В). При необходимости его уровень можно установить в диапазоне 0,25…0,7 Вэфф подбором резистора R8.

Теперь можно приступить к калибровке приставки, подключив ее к частотомеру. Это можно сделать несколькими методами.

Если есть возможность измерить с точностью не хуже 1 % катушку на незамкнутом магнитопроводе с индуктивностью порядка десятков-сотен мкГ, то используя ее как образцовую, подберите емкость конденсаторов С1…С4 так, чтобы показания приставки совпали с требуемым значением.

Во втором случае понадобится один термостабильный эталонный конденсатор, емкость которого не менее 1000 пФ и известна с высокой точностью. В крайнем случае, если нет возможности точно измерить емкость, можно применить конденсаторы КСО, К31 с допуском ±2―5 %, смирившись с вероятным увеличением погрешности. Автор использовал конденсатор К31-17 с номинальной емкостью 5970 пФ ±0,5 %. Сначала по частотомеру фиксируем частоту F1 для катушки Lx без дополнительного внешнего конденсатора. Затем присоединяем параллельно катушке эталонный конденсатор Cэт и фиксируем частоту F2. Теперь можем определить реальную входную емкость собранной приставки и индуктивность катушки Lx по формулам

Вручную делать многократные пересчеты долго, поэтому автор пользуется удачной программой расчетов MIX10, разработанной А. Беспальчиком и любезно выложенной им на сайте СКР < > .

Чтобы можно было пользоваться приведенными в начале статьи упрощенными формулами, нужно подбором конденсаторов С1―С4 установить емкость Свх равной 25330±250 пФ. После окончательной корректировки емкости конденсатором С1 сделайте контрольный замер по приведенной выше методике, чтобы убедиться, что емкость С вх соответствует требуемой.

После этого приставка готова к работе. Попробуем оценить ее возможности; для этого проведем несколько опытов.

1 . При измерении малых значений индуктивности большую погрешность вносит собственная индуктивность приставки, состоящая из индуктивности проводников, соединяющих разъем Х1 с платой, и индуктивности монтажа. Попробуем ее измерить. Сначала замкнем контакты разъема Х1 прямым коротким проводником. Скрученные провода, идущие к разъему Х1 длиной 30 мм, и перемычка длиной 30 мм образуют один виток катушки. Если в генераторе транзисторы КТ326Б, колебания возникают только при ударном возбуждении контура путем периодичного включения питания; при этом частота F1 = 2,675...2,73 МГц, что соответствует индуктивности 0,14 мкГн (с транзисторами КТ3107Б генерация совсем не возникает). Теперь сделаем из провода диаметром 0,5 мм кольцо диаметром 3 с расчетной индуктивностью около 0,08 мкГн и подключим к Х1. Для генератора на транзисторах КТ326Б частотомер показал значение 2,310 МГц, что соответствует индуктивности 0,19 мкГн. Вариант на транзисторах КТ3107Б генерировал только при ударном возбуждении контура. Таким образом, собственная индуктивность приставки оказалась в пределах 0,1…0,14 мкГн.

Выводы: высокая точность измерений обеспечивается для индуктивности более 5 мкГн. При значениях в интервале 0,5... 5 мкГн надо учитывать собственную индуктивность 0,1…0,14 мкГн. При индуктивности менее 0,5 мкГн измерения носят оценочный характер. Уверенно регистрируемая минимальное значение индуктивности 0,2 мкГн.

2 . Измерение неизвестной индуктивности. Допустим, для нее частота F1= 0,16803 МГц, что по упрощенной формуле расчета индуктивности дает 35,42 мкГн.

При проверке с эталонным конденсатором частота F2 = 0.15129 МГц соответствует индуктивности 35,09 мкГн. Погрешность ― менее 1 %.

3 . Используя измеренную индуктивность в качестве образцовой, можно оценить входную емкость генератора. Емкость контура состоит из емкости конденсаторов С1―С4 и емкости Сген, состоящей из суммы емкости монтажа и емкости, вносимой транзисторами VT1, VT2, т. е. Свх= С1+С ген.

Чтобы определить величину С ген, отключаем конденсаторы С1―С4 и измеряем с используемой индуктивностью частоту F3. Теперь Сген можно рассчитать по формуле

В авторском варианте приставки с транзисторами КТ3107Б емкость Сген равна 85 пФ, а с транзисторами КТ326Б ― З9 пФ. По сравнению с требуемым значением 25330 пФ это меньше 0,4 %, что позволяет применять практически любые высокочастотные транзисторы без заметного влияния на точность измерения.

4 . Благодаря большой собственной емкости приставки, при измерении индуктивности до 0,1 Гн погрешность, вносимая собственной емкостью катушек, несущественна. Так при измерении индуктивности первичной обмотки выходного трансформатора от транзисторных приемников получилось значение L = 105,6 мГн. При дополнении колебательного контура эталонным конденсатором 5970 пФ получилось другое значение ― L=102 мГн, а собственная емкость обмотки Стр= Сизм– С1 = 25822 – 25330 = 392 пФ.

5 . Амплитуда на измерительном колебательном контуре величиной 70…80 мВ оказывается меньше порога открывания кремниевых p-n переходов, что позволяет во многих случаях измерять индуктивность катушек и трансформаторов прямо в схеме (естественно, обесточенной). Благодаря большой собственной емкости приставки (25330 пФ), если емкость в измеряемой цепи не более 1200 пФ, погрешность измерения не превысит 5 %.

Так при измерении индуктивности катушки контура ПЧ (емкость контура не более 1000 пФ) непосредственно на плате транзисторного приемника получено значение 92,1 мкГн. При измерении индуктивности катушки, выпаянной из платы, расчетное значение оказалось меньше ― 88,7мкГн (погрешность менее 4 %).

Для подключения к катушкам индуктивности, размещенных на платах, автор использует щупы с соединительными проводами длиной 30 см, скрученных с шагом одна скрутка на сантиметр. Ими вносится дополнительная индуктивность 0,5…0,6 мкГн ― это важно знать при измерении малых величин, для оценки ее достаточно замкнуть щупы между собой.

В заключение еще несколько полезных советов.

Определить магнитную проницаемость кольцевого магнитопровода без маркировки можно по следующей методике. Намотать 10 витков провода, равномерно распределив его по кольцу, и измерить индуктивность обмотки, а полученное значение индуктивности подставить в формулу:

L-индуктивность

W- кол-во витков

D,d,h – размер кольца в мм

В практических расчетах удобно пользоваться упрощенной формулой для расчета числа витков на кольцевых магнитопроводах

Значения коэффициента k для ряда широкораспространенных кольцевых магнитопроводов по данным В. Т. Полякова приведены в табл. 1 .

Таблица 1

Типоразмер

К18х8х4

К18х8х4

К18х8х4

К18х8х4

К18х8х4

К18х8х4

Магнитная проницаемость

3000

2000

1000

2000

1000

Для широко распространенных броневых магнитопроводов из карбонильного железа индуктивность удобнее рассчитывать в микрогенри, поэтому введем коэффициент m, и формула соответственно изменится.

Некоторые значения для распространенных броневых магнитопроводов приведены в табл. 2 .

Сердечник

СБ-9а

СБ-12а

СБ-23-17а

СБ23-11а

Составить подобную таблицу для имеющихся у вас кольцевых и броневых магнитопроводов, воспользовавшись предлагаемой приставкой, не составит большого труда.

ЛИТЕРАТУРА

1. Гайдук П. Частотомер измеряет индуктивность. ― Радиолюбитель, 1996, № 6, с. 30. 2. L-метр с линейной шкалой. ― Радио, 1984, № 5, с. 58, 61. 3. Поляков В. Катушки индуктивности. ― Радио, 2003, № 1, с. 53. 4. Поляков В. Радиолюбителям о технике прямого преобразования. ― М.: Патриот, 1990, с. 137, 138. 5. Полупроводниковые приемно-усилительные устройства: Справочник радиолюбителя. /Терещук Р. М. и др./ ― Киев: Наукова думка, 1987, с. 104.

С. Беленецкий, г. Луганск, Украина
Радио, 2005, №5, с.26-28

Для многих любителей электроники актуальной является задача измерения емкостей конденсаторов и индуктивностей дросселей, поскольку, в отличие от резисторов, эти компоненты нередко бывают не промаркированы (особенно SMD). Между тем, имея генератор синусоидальных колебаний и осциллограф (приборы, которые должны быть в любой радиолюбительской лаборатории), эта задача довольно просто решается. Всё, что для этого нужно — это вспомнить начальный курс электротехники.

Рассмотрим простейшую схему — последовательно соединённые резистор и конденсатор. Пусть эта схема подключена к источнику синусоидальных колебаний. Запишем уравнения для напряжений на элементах нашей схемы в операторной форме: U R = I * R, U C = -j * I / ωC. Из этих уравнений очевидно, что амплитудные значения напряжений будут относится следующим образом: U R / U C = R * ωC (конечно, напряжения будут сдвинуты по фазе, но нас это в данном случае не волнует, нас волнуют
только амплитуды).

Думаю, что многие уже догадались к чему я клоню. Да-да, из последнего уравнения довольно просто вычисляется ёмкость:

C = U R /U C * 1/ωR или, с учетом того, что ω= 2πf, получим C = U R /U C * 1/2πfR ; (1)

Итак, алгоритм простой: подключаем последовательно с измеряемой ёмкостью резистор, подключаем к этой схеме генератор синусоидальных колебаний и осциллографом измеряем амплитуды напряжений на нашем конденсаторе и резисторе. Изменяя частоту, добиваемся, чтобы амплитуда напряжений на обоих элементах была примерно одинаковой (так измерение получится точнее). Далее, подставляя измеренные значения амплитуд в формулу (1), находим искомую ёмкость конденсатора.

Аналогично можно вывести формулу для подсчета индуктивности:

L = U L /U R * R/ω или, с учётом того, что ω= 2πf, получим L = U L /U R * R/2πf ; (2)

Таким образом, имея генератор синусоидальных колебаний и осциллограф, с помощью формул (1) и (2) оказывается довольно просто вычислить неизвестную ёмкость или индуктивность (благо резисторы практически всегда имеют маркировку).

Алгоритм действий следующий:

1) Собираем схему из последовательно соединённых резистора известного номинала и исследуемой ёмкости (индуктивности).

2) Подключаем эту схему к генератору синусоидальных колебаний и изменением частоты добиваемся того, чтобы амплитуды напряжений на обоих элементах схемы были примерно одинаковы.

3) По формуле (1) или (2) вычисляем номинал исследуемой ёмкости или индуктивности.

Несмотря на то, что наши элементы не идеальные, есть допуск на номинал резистора и всегда есть некоторые погрешности измерений, результат получается довольно точным (по крайней мере можно без труда идентифицировать ёмкость в стандартном ряду). Пусть у меня при измерении ёмкости получилась величина 1,036 нФ. Очевидно, что на исследуемом конденсаторе должна была быть нанесена маркировка 1 нФ.

Для того, чтобы вам легче было сориентироваться с номиналами резисторов, приведу некоторые примеры:

— для ёмкости 15 пФ в схеме с резистором 200 кОм амплитуды напряжений будут примерно равны на частоте 53 кГц;

— для ёмкости 1 нФ в схеме с резистором 10 кОм амплитуды напряжений будут примерно равны на частоте 15,9 кГц;

— для ёмкости 0,1 мкФ в схеме с резистором 680 Ом амплитуды напряжений будут примерно равны на частоте 2,34 кГц;

— для индуктивности 3 мкГн в схеме с резистором 120 Ом амплитуды напряжений будут примерно равны на частоте 6,3 МГц;

— для индуктивности 100 мкГн в схеме с резистором 120 Ом амплитуды напряжений будут примерно равны на частоте 190 кГц.

Таким образом, диапазон измеряемых емкостей и индуктивностей зависит только от диапазона частот, с которыми могут работать ваши генератор и осциллограф.

На основе этого метода можно изготовить прибор для автоматического измерения емкостей и индуктивностей.

Online-калькулятор для расчёта емкостей и индуктивностей :

(для правильности расчётов используйте в качестве десятичной точки точку, а не запятую)

1) Расчёт емкостей.

Сегодня на рынке продается множество приборов, измеряющих емкость и индуктивность, только стоят они в несколько раз дороже китайского мультиметра. Тот кому каждый день необходимо производить замеры емкости или индуктивности непременно купит себе такой, а что делать если такая необходимость возникает крайне редко? В таком случае можно применить описанный ниже метод.
Известно, что если на интегрирующую RC цепочку подать прямоугольный импульс, то форма импульса изменится и будет такой как на картинке.

Время, за которое напряжение на конденсаторе достигнет 63% от подаваемого, называется тау. Формула по которой считается тау изображена на рисунке.


В таком случае говорят, что интегрирующая цепочка сгладила фронты прямоугольного импульса.
Так же известно, что если на параллельный LC контур подать прямоугольный импульс, в контуре возникнут затухающие колебания, частота, которых равна резонансной частоте контура. Резонансная частота контура находится по формуле Томсона, из которой можно выразить индуктивность.


Подключается контур через конденсатор малой емкости, чем меньше тем лучше, который ограничивает ток, поступающий в контур. Давайте рассмотрим, как конденсатор малой емкости ограничивает ток.
Для того, чтобы конденсатор зарядился до номинального напряжения ему надо передать определенный заряд. Чем меньше емкость конденсатора, тем меньший заряд ему необходим, чтобы напряжение на обкладках достигло напряжения импульса. Когда мы подаем импульс, конденсатор, малой емкости, очень быстро заряжается и напряжение на обкладках конденсатора становится равно напряжению импульса. Так как напряжение конденсатора и импульса равны, нет разности потенциалов, следовательно ток не течет. При чем ток может перестать течь через конденсатор спустя некоторое время от начала импульса, а оставшуюся часть времени импульса энергия к контуру подводится не будет.
Для проведения эксперимента нам потребуется генератор импульсов прямоугольной формы с частотой 5-6KHz.
Можно собрать его по схеме на рисунке ниже или воспользоваться генератором сигналов, я делал обоими способами.


Теперь, вспомнив, как ведет себя при подаче прямоугольного импульса интегрирующая RC цепочка и параллельный LC контур, соберем простую схему изображенную на картинке.


Сначала измерим емкость конденсатора, место его подключения на схеме обозначено С?. Резистора 1K под рукой не нашлось, поэтому я использовал 100 Ohm и вместо конденсатора 10pF использовал конденсатор 22pF. В принципе номинал резистора можно выбрать любой, но не ниже 50 Ohm, иначе сильно просядет напряжение генератора.
В данном эксперименте я буду использовать генератор сигналов, выходное сопротивление которого равно 50 Ohm. Включим генератор и установим амплитуду 4V, если собирать генератор по схеме то регулировать амплитуду можно, изменяя напряжение питания.


Подключим щупы осциллографа параллельно конденсатору. На осциллографе должна появиться следующая картинка.


Немного увеличим её.


Измерим время, за которое напряжение на конденсаторе достигает 63% от напряжения импульса или 2,52V.


Оно равно 14,8uS. Так как сопротивление генератора включено последовательно с нашей цепочкой его необходимо учесть, в итоге активное сопротивление равно 150 Ohm. Разделим значение тау(14,8 uS) на сопротивления(150 Om) и найдем емкость, она равна 98,7 nF . На конденсаторе написано, что емкость равна 100nF.

Теперь измерим индуктивность. На схеме место подключения катушки индуктивности обозначено L?. Подключаем катушку, включаем генератор и подключаем щуп осциллографа параллельно контуру. На осциллографе увидим такую картинку.


Увеличиваем развертку.


Видим, что период колебаний равен 260KHz.
Ёмкость щупа равна 100pF и в данном случае её необходимо учесть потому, что она составляет 10% от емкости контура. Суммарная емкость контура равна 1,1nF. Теперь подставим в форму для нахождения индуктивности, емкость конденсатора(1,1nF) и частоту колебаний(260KHz). Для таких вычислений я пользуюсь программой Coil32.


Получилось 340,6uH, судя по маркировке индуктивность равна 347uH и это отличный результат. Этот способ позволяет измерять индуктивность с погрешность до 10% .
Теперь мы знаем как измерить емкость конденсатора и индуктивность катушки, используя осциллограф.
Подавляющее большинство любительских измерителей индуктивности на контроллерах измеряет частоту генератора работающего на частотах около 100кГц, и хотя они якобы имеют разрешение 0.01мкГн, но на деле при индуктивностях 0.5 и ниже представляют из себя хороший генератор случайных чисел, а не прибор.У разработчика радиочастотных устройств есть три пути:

  1. обломаться

  2. купить промышленный измеритель импеданса и некоторое время поголодать

  3. сделать что-то более высокочастотное и широкополосное.

Наличие множества онлайн калькуляторов кардинально упрощают задачу, можно обойтись одним лишь генератором, подключаемым к частотомеру, не сильно потеряв в удобстве, зато выиграв в функционале.

Приставка может измерять индуктивности от 0,05мкГн. Выходное напряжение около 0.5В. Собственная индуктивность выводов 0,04мкГн. Диапазон выходных частот: хз...77МГц.

Широкополосный генератор выполнен по известной двухточечной схеме и мало чувствителен к добротности частотозадающего контура.

Для измерения наименьших индуктивностей емкость выбрана 82пф, вместе с входной ёмкостью расчётная(для калькулятора) получается около 100пф(круглые числа более удобны), а макс. частота генерации около 80МГц. С контура напряжение подаётся на повторитель vt2 а с него на эмиттер vt1, таким образом реализована ПОС. Применяемая иногда непосредственная связь затвора с контуром приводит к неустойчивой работе генератора на частотах 20-30Мгц, потому применён разделительный конденсатор с1. Полевой транзистор должен иметь начальный ток стока не менее 5мА, иначе транзистор нужно приоткрыть сопротивлением несколько сотен кОм с плюса на затвор. Лучше применить транзистор в высокой крутизной, это увеличит выходное напряжение снимаемое с истока. Хотя сам по себе генератор практически не чувствителен к типам транзисторов.

Для расчёта применяются онлайн калькуляторы
наиболее удобный
наиболее неудобный
гламурный, но с характером

Задающая ёмкость в приборе может быть любой, даже китайская глина. Лучше иметь эталонные катушки, а измеренную ёмкость уже подставлять в калькулятор, хотя на деле это и не обязательно.

Фольга с обратной стороны используется в качестве экрана.
Выводы на катушку выполняются в виде гибких плоских поводков из оплётки длиной 2см. с крокодилами.


http://edisk.ukr.net/get/377203737/%D0%B8%D0%BD%D0%B4.lay6

Особенности использования.


Для питания лучше предусмотреть соответствующую клемму на частотомере.

Выводы на катушку должны быть максимально прямыми если измеряются сверхмалые индуктивности. От результата нужно отнять собственную индуктивность выводов 0.04мкГн. Минимально измеряемая индуктивность примерно такая же.

Для измерения индуктивностей до 100мкГн годится штатная ёмкость, выше лучше использовть дополнительные ёмкости от 1н, иначе будет погрешность от межвитковой ёмкости катушки.

Для измерения межвитковой ёмкости нужно измерить истинное значение индуктивности с С 10-100н, потом измеряется частота с штатной ёмкостью(100пф), вносится в калькулятор, далее считается суммарная емкость, от которой нужно отнять 100пф.
Пример. аксиальный дроссель 3.8 мГн, со штатной ёмкостью частота 228 кГц, суммарная ёмкость 128пф, межвитковая 28.
Таким же образом вычисляются ёмкости в контурах.

Для измерений дросселей на низкочастотных магнитопроводах НН они должны иметь достаточно большое количество витков, например на кольцах 2000НН не менее 20, иначе частота может быть выше рабочей для них(до 400кГц), и генерация будет в лучшем случае срываться, а в худшем импульсная, как в блокинг генераторе, с частотой в килогерцы. Для маловитковых нужна дополнительная ёмкость.

error: Content is protected !!